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Complex fluids: Basic laws

Incompressibility of the fluid:

∇ · u = 0 (1)

where u is a vector valued function expressing the velocity of the fluid at a
point in space.

The balance of momentum is

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · T −∇p (2)

where ρ is the density, T is the stress tensor and p is an isotropic pressure.

The stress tensor T represents the forces which the material develops in
response to being deformed.

We need a constitutive relation relating T to the motion of the fluid.

The constitutive law for the classical Newtonian fluid is

T = ν
(
∇u + (∇u)t)

where ν is the viscosity. In this case the system (1), (2) becomes the
celebrated Navier-Stokes system of equations.
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In the case of Non-Newtonian fluids, of differential type of grade n

T = −pI + F (A1,A2,A3, ...,An),

where F is a polynome of grade n, A1,A2,...An lare teh n tensors of
Rivlin-Erickson :

A1(v) = ∇v + (∇v)t , Ak+1(v) =
d

dt
Ak (v) + (∇v)tAk (v) +Ak (v)(∇v),

where d
dt = ∂t + v∇. The equation of second grade fluids is the

following:

(Sα)


∂t(u − α∆u)− ν∆u + curl (u − α∆u)× u +∇p = f

div u = 0

u(0, x) = u0(x).

(3)
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In the two-dimensional case, the vorticty ω = curl(u − α∆u) verifies

∂tω + u∇ω − ν∆(I − α∆)−1ω = curl f

which is analogue to the 2D Euler with a damped term

∂tu + u∇u + γu = f ; ∂tω + u∇ω + γω = curl f .

If u0 ∈ H3(T 2) and f ∈ L∞(R+;H1(T 2)), global existence of
u ∈ Cb(R+;H3(T 2))

If u0 ∈ H4(T 2) and f ∈ L∞(R;H2(T 2)), the solution belong to
C (R+;H4).

If f = f (x), it exist a global compact attractor Aα in H3(T 2).
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Theorem (P., Raugel, Rekalo): 1) Let f ∈ Hm, m ∈ N∗. Then, for
α > 0 small enough, the global attractorAα is bounded in Hm+2.
2) For all α > 0 and all f ∈ H1+β , the global attractor Aα is bounded in
H3+β where β > 0 depend on α and the norme ‖f ‖H1 .

Sketch of the proof: We split the equation in two non-autonomous
equations

∂t(vn − α∆vn)− ν∆vn + curl (vn − α∆vn)× u +∇pn = f ,

vn(sn, x) = 0 t > sn,

∂t(wn − α∆wn)− ν∆wn + curl (wn − α∆wn)× u +∇p̃n = 0,

wn(sn, x) = u(sn, x) t > sn,

- by the uniqueness of the solution: u = vn + wn

- by the propagation of the regularity: vn(t) is uniformly bounded in H4,
pour t ∈ R
- by the exponential decay in H3, we have wn(t)→ 0 in H3, when
sn → −∞

‖wn(t)‖H3 ≤ C0 exp(−C1(t − sn))‖u(sn)‖H3 .
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Analyticity of the solution of the second grade fluids

- We consider analytical data u0 such that eτ0|D|u0 ∈ H3 and
eτ0|D|f ∈ L1(R).
- For 2D Euler equation it is well-known that the solution is analytical in
space but the radius of the analyticity is exponential decaying in time.
Main goal: to prove that the radius of the analyticity is bounded by
bellow for all time.
Theorem (P., Vicol) Let ν, α > 0, and assume that eτ0|D|u0 ∈ H3(T 2),
and eτ0|D|f ∈ L1(R), τ0 > 0. There exists a unique global in time
Gevrey-class solution u(t), such that eτ(t)|D|u(t) ∈ H3, and we have the
lower bound

τ(t) ≥ τ0e
−Cγ−1‖ω0‖Xτ0 .

In the three-dimensional case we obtain a analytical local in time solution

τ(t) ≥ τ0e
−C‖ω0‖Xτ0

∫ t
0
‖∇u‖L∞ t ∈ [0,T ∗).
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Let f = 0 for simplicity. In the following, the function τ verifies τ̇(t) ≤ 0.

We remark the imprtant fact that ω̃(t) = eτ(t)|D|ω(t) verifies a
regularized equation (with a damped term)

∂t ω̃ − τ̇(t)|D|ω̃ + γω̃ + eτ(t)|D|(u∇ω) = 0.

By commutators formula

|(eτ(t)|D|(u∇ω)− u∇ω̃; ω̃)L2 | ≤ Cτ(t)‖∇ũ‖L∞‖|D|
1
2 ω̃‖2

L2

So, we obtain

1

2

d

dt
‖ω̃‖2

L2 − τ̇(t)‖|D| 12 ω̃‖2
L2 + γ‖ω̃‖2

L2 ≤ Cτ(t)‖∇ũ‖L∞‖|D|
1
2 ω̃‖2

L2 .

We chose τ that satisfies

τ̇ + Cτ‖∇ũ‖L∞ = 0, τ(t) = τ0e
−
∫ t

0
‖∇ũ‖L∞

then we have
1

2

d

dt
‖ω̃‖2

L2 + γ‖ω̃‖2
L2 ≤ 0,

and therefore

‖∇ũ‖L∞ ≤ ‖ω̃(t)‖L2 ≤ ‖ω̃0‖L2e−γt and so, τ(t) ≥ τ0e
−γ−1‖ω̃0‖L2 .
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Coupled Navier-Stokes and Q-tensor System
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The additional stress tensor and energy dissipation

In the case of non-Newtonian fluids containing suspensions of liquid
crystal molecules the stress has an additional component
representing forces due to the liquid crystal molecules.

On the other hand one should have an equation for the liquid
crystals, showing how the flow affects the orientation and
distribution of the molecules.

The additional stress tensor encodes the coupling between the flow
and the molecules.

The form of the additional stress tensor is directly related to energy
dissipation. More precisely the “content” of the stress tensor should
be such that the total energy of the fluid

E (t)︸︷︷︸
total energy

=
1

2

∫
Rd

|u(x , t)|2 dx︸ ︷︷ ︸
kinetic energy of the flow

+ F(t)︸︷︷︸
free energy of the molecules

decreases in time.
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The equations

The flow equations: {
∂t u + u∇u = ν∆u +∇p +∇ · τ +∇ · σ
∇ · u = 0

where we have the symmetric part of the additional stress tensor:

τ = −ξ
(

Q +
1

3
Id

)
H − ξH

(
Q +

1

3
Id

)
+2ξ(Q +

1

3
Id)QH − L

(
∇Q �∇Q +

tr(Q2)

3
Id

)
and an antisymmetric part σ = QH − HQ where

H = L∆Q − aQ + b[Q2 −
tr(Q2)

3
Id ]− cQtr(Q2)

The equation for the liquid crystal molecules, represented by functions with
values in the space of Q-tensors (i.e. symmetric and traceless d × d matrices):

(∂t + u · ∇)Q − S(∇u,Q) = ΓH

with

S(∇u,Q)
def
= (ξD + Ω)(Q +

1

3
Id) + (Q +

1

3
Id)(ξD −Ω)− 2ξ(Q +

1

3
Id)tr(Q∇u)
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Energy dissipation and weak solutions-apriori bounds I

The total energy

E(t)
def
=

∫
Rd

L

2
|∇Q|2 +

a

2
tr(Q2)− b

3
tr(Q3) +

c

4
tr2(Q2) dx︸ ︷︷ ︸

free energy of the liquid crystal molecules

+
1

2

∫
Rd

|u|2(t, x) dx︸ ︷︷ ︸
kinetic energy of the flow

is decreasing d
dt
E(t) ≤ 0.

Simple proof: multiply the first equation in the system to the right by
−H, take the trace, integrate over Rd and by parts and sum with the
second equation multiplied by u and integrated over Rd and by parts.

In the process maximal derivatives are cancelled and you observe suprizing
non-trivial cancellations
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Energy dissipation and weak solutions-apriori bounds II

d

dt
E(t) = −ν

∫
Rd

|∇u|2 dx

−Γ

∫
Rd

tr

(
L∆Q − aQ + b[Q2 − tr(Q2)

d
Id ]− cQtr(Q2)

)2

dx ≤ 0

Note that this does not readily provide Lp norm estimates.

Proposition

For d = 2, 3 there exists a weak solution (Q, u) of the coupled system, with
restriction c > 0, subject to initial conditions

Q(0, x) = Q̄(x) ∈ H1(Rd ), u(0, x) = ū(x) ∈ L2(Rd ),∇ · ū = 0 in D′(Rd ) (4)

The solution (Q, u) is such that Q ∈ L∞loc (R+;H1) ∩ L2
loc (R+;H2) and

u ∈ L∞loc (R+; L2) ∩ L2
loc (R+;H1).
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Some other types of complex fluids

Oldroyd-B: {
∂t u + u∇u − ν∆u +∇p = µ∇ · ρ
∂tρ+ u∇ρ+ aρ+ ρΩ− Ωρ− b(Dρ+ ρD) = µ2D

The formal energy estimate is:

1

2

d

dt
(µ2‖u(t)‖L2 + µ1‖ρ(t)‖L2 ) + νµ2‖∇u(t)‖L2 + aµ1‖ρ(t)‖L2

≤ |b|‖D(t)‖L∞‖ρ(t)‖L2

Smoluchowski Navier-Stokes systems

∂v
∂t

+ v · ∇v − ν∆v +∇p = ∇ · τ in Ω× (0,T )

∂f
∂t

+ v∇f +∇g · (Wf )−∆g f = 0 in Ω× (0,T )

∇ · v = 0 in Ω× (0,T ),

where
τij =

∫
M γ

(1)
ij (m)f (t, x ,m)dm +

∫
M

∫
M γ

(2)
ij (m1,m2)f (t, x ,m1)f (t, x ,m2)dm and

W = c ij
α∂j vi .

The energy E(t) = 1
2

∫
Rd |u(t, x)|2 dx +

∫
Rd

∫
M f log f dx dm decreases in time.
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Regularity difficulties: the maximal derivatives and “the
co-rotational parameter”

Recall the system:

(∂t + u · ∇)Q +
(
ξD(u) + Ω(u)

)
(Q + 1

3
Id) + (Q + 1

3
Id)
(
ξD(u)− Ω(u)

)
−2ξ(Q + 1

3
Id)tr(Q∇u) = ΓH

∂t u + u∇u = ν∆uα +∇p +∇ ·
(

QH − HQ
)

−∇ ·
(
ξ
(
Q + 1

3
Id
)

H + ξH
(
Q + 1

3
Id
) )

+2ξ∇ ·
(

(Q + 1
3

)QH
)
− L∇ ·

(
∇Q �∇Q + 1

3
tr(Q2)

)
∇ · u = 0

with H = L∆Q − aQ + b[Q2 − tr(Q2)
3

Id ]− cQtr(Q2).

Worse than Navier-Stokes

Where’s the difficulty?

If ξ = 0 maximal derivatives only

If ξ 6= 0 maximal derivatives+high power of Q
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Energy dissipation revisited I

Cancellations that appear in the energy dissipation destroy some high
derivatives...

The cancellation lemma:

Lemma

For any symmetric matrices Q′,Q ∈ Rd×d and Ωαβ = 1
2

(uα,β − uβ,α) ∈ Rd×d

(decaying fast enough at infinity so that we can integrate by parts, in the formula
below, without boundary terms) we have:∫

Rd
tr
(
(ΩQ′ − Q′Ω)∆Q

)
dx −

∫
Rd
∂β(Q′αγ∆Qγβ −∆QαγQ′γβ)uα dx = 0

Idea: differentiate the equations and to the highest derivatives the equations will
keep the same structure (as the initial system) plus lower-order derivatives
perturbation; thus we can use the high-derivatives cancellations available for the
initial system to avoid the maximal derivatives

Unlike in previous approaches (in complex fluids) we do not estimate the two
equations separately but always together.
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Energy dissipation revisited II

Littlewood-Paley language: take take χ ∈ D(B(0, 1)) such that
χ ≡ 1 on B(0, 1/2) and let ϕ(ξ) = χ(ξ/2)− χ(ξ). Define

∆qu = F−1(ϕ(2−qξ)Fu), Squ = F−1(χ(2−qξ)Fu)

Then we have in the sense of distributions u = S0u +
∑

q>0 ∆qu.

Bony’s paraproduct decomposition:

∆q(ab) = Sq−1a∆qb + Σ|q′−q|≤5[∆q,Sq′−1a]∆q′b

+Σ|q′−q|≤5(Sq′−1a− Sq−1a)∆q∆q′ + Σq′>q−5∆q(Sq′+2b∆q′a)

In our case, the equation in Q becomes:

∂t∆qu − ν∆∆qu = ∆q∇p + L∇ · (Sq−1Q∆q∆Q −∆q∆QSq−1Q)

−∆q(u∇u)− L∇ ·∆q

(
∇Q �∇Q − 1

3
tr(∇Q �∇Q)

)
+ perturbative (lower derivatives) terms
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The rate of increase of the high norms- the Brezis-Gallouet
trick and beyond

Let y(t) = ‖u(t)‖2
H1+ε + ‖∇Q(t)‖2

H1+ε and f (t) = ‖u(t)‖2
H1 + ‖∇Q(t)‖2

H1 .

An estimate of the form

y ′(t) ≤ f (t)y(t) log(1 + y(t))

and
∫ t

0
f ≤ Cet would give y(t) ≤ Ceeet

.

The logarithm come from Brezis-Gallouet trick-logarithmic embedding!

‖u‖L∞(R2) ≤ ‖u‖H1

(
1 + ln(e + ‖u‖H1+ε)

)
∼ f (t) ln(1 + y)

This works in the co-rotational case ξ = 0 after “peeling out” the
maximal derivatives.

If ξ 6= 0 turns out that we can obtain an estimate of the form:

y ′(t) ≤ f (t)y(t)
(

1 + Cξ log(1 + y(t))(1 + ln(1 + ln y))
)

One logarithm is produced through through the logarithmic embedding.
But the “double logarithm”?
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The regularity result, in 2D

Theorem

(P., Zarnescu): Let s > 0 and (Q̄, ū) ∈ Hs+1(R2)× Hs(R2). There
exists a global a solution (Q(t, x), u(t, x)) of the coupled system, with
restriction c > 0, subject to initial conditions

Q(0, x) = Q̄(x), u(0, x) = ū(x)

and Q ∈ L2
loc (R+;Hs+2(R2)) ∩ L∞loc (R+;Hs+1(R2)),

u ∈ L2
loc (R+;Hs+1(R2) ∩ L∞loc (R+;Hs). Moreover, we have:

L‖∇Q(t, ·)‖2
Hs (R2) + ‖u(t, ·)‖2

Hs (R2) ≤ C
(
e + ‖Q̄‖Hs+1(R2) + ‖ū‖Hs (R2)

)eeeCt

(5)
where the constant C depends only on Q̄, ū, a, b, c, Γ and L. If ξ = 0
the increase in time of the norms above can be made to be only doubly
exponential.
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The difference between ξ = 0 (co-rotational) and ξ 6= 0

Recall the system:

(∂t + u · ∇)Q −
(
ξD(u) + Ω(u)

)
(Q + 1

3
Id) + (Q + 1

3
Id)
(
ξD(u)− Ω(u)

)
−2ξ(Q + 1

3
Id)tr(Q∇u) = ΓH

∂t u + u∇u = ν∆uα +∇p +∇ ·
(

QH − HQ
)

−∇ ·
(
ξ
(
Q + 1

3
Id
)

H + ξH
(
Q + 1

3
Id
) )

+2ξ∇ ·
(

(Q + 1
3

)QH
)
− L∇ ·

(
∇Q �∇Q + 1

3
tr(Q2)

)
∇ · u = 0

with H = L∆Q − aQ + b[Q2 − tr(Q2)
3

Id ]− cQtr(Q2).
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A technical trick-how the “double logarithm” appears I
We want to obtain y′ + ν

2
‖∇u‖2

Hs + ΓL
2
‖∆Q‖2

Hs ≤ y ln(e + y)
(

1 + ln
(

e + ln(e + y)
))

with y = ‖u‖2
Hs + ‖∇Q‖2

Hs .

Attempt to estimate

I def
=

∑
|q′−q|≤5

‖S
q′−1

(∇Q) · ∆
q′ u‖L2‖Q‖L∞‖∆∆q Q‖

L2

(I ∼ ∆q ( worst term) so we want to estimate 22qsI ∼ y)

We have

|I| ≤
∑

|q′−q|≤5

‖S
q′−1

∇Q‖
L

2
ε
‖Q‖L∞‖∆

q′ u‖
L

2
1−ε

‖∆∆q Q‖
L2 (6)

Using the interpolation inequality

‖f ‖
L2p ≤ C

√
p‖f ‖

1
p

L2
‖∇f ‖

1− 1
p

L2

with p = 1
1−ε ∈ [1, 2], we obtain:

|I| ≤ C
∑

|q′−q|≤5

‖Sq∇Q‖
L

2
ε
‖Q‖L∞‖∆q u‖1−ε

L2
‖∆q∇u‖ε

L2‖∆q ∆Q‖
L2 ,

where C > 0 is constant independent of ε ∈ (0, 1
2

).

Using Young’s inequality we obtain:

|I| ≤ C
∑

|q′−q|≤5

((
‖Sq∇Q‖

L
2
ε
‖Q‖L∞

) 2
1−ε ‖∆q u‖2

L2 +
ν

100
‖∆q∇u‖2

L2 +
ΓL2

100
‖∆q ∆Q‖2

L2

)

≤ 2−2qs
(

C
(
‖Sq∇Q‖

L
2
ε
‖Q‖L∞

) 2
1−ε ‖u‖2

Hs +
ν

100
‖∇u‖2

Hs +
ΓL2

100
‖∆Q‖Hs

)
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A technical trick -how the “double logarithm” appears II
We have obtained:

y′ ≤
(
‖∇Q‖

L
2
ε
‖Q‖L∞

) 2
1−ε y(t) (7)

On the other hand using again the interpolation inequality

‖g‖
L2p ≤ C

√
p‖g‖

1
p

L2
‖∇g‖

1− 1
p

L2

we get:

‖∇Q‖
2

1−ε

L
2
ε

≤
( 1

ε

) 1
1−ε ‖∇Q‖

2ε
1−ε
L2

‖∆Q‖2
L2 ≤

( 1

ε

) 1
1−ε (1 + ‖∇Q‖2

L2︸ ︷︷ ︸
def

= f (t)

)‖∆Q‖2
L2

where for the last inequality we assumed 0 < ε < 1
2

. Then (7) becomes:

y′(t) ≤ C(1 + f (t))‖∆Q‖2
L2
[
(1 + f (t)) ln(e + y(t))

] 1
1−ε

( 1

ε

) 1
1−ε

y(t)

Observing that the constants in the interpolation inequality do not depend on the space Lp that we work with and denoting

N
def
= ln(e + y) we choose

ε
def
= (1 + ln N)−1

and observing that [N(1 + ln N)]
1+ 1

ln N ≤ CN(1 + ln N) for some constant C independent of N, the last inequality becomes:

ϕ
′(t) ≤ C(1 + f (t))3‖∆Q‖2

L2ϕ(t) ln
(

e + ϕ(t)
)(

1 + ln(e + ln(ϕ(t) + e)
))
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Current and future work

Uniqueness of weak solutions

Asymptotic behaviour

Non-newtonian effects

Challenging open problems

The optimal rate of increase of high norms: one, two, three
exponentials? No exponential, polynomial growth?

Are there regimes where the system is “better” than 3D
Navier-Stokes?
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